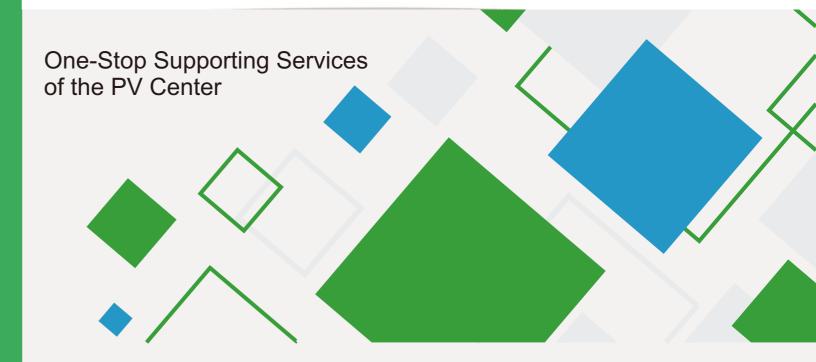


WENZHOU SOLARC NEW ENERGY CO.,LTD.

Add:Wenzhou Bridge Industrial Zone,Noth Beibaixiang,Yueqing, Zhejiang 325603,P.R.China

E-mail:solarc@solarc-electric.com


Website:www.solarc-electric.com

If there are any changes in product size and parameters, the latest instructions will prevail without further notice.

CONTENTS

DC Fuse	0
SCPV1038-32 DC1000V Fuse	0
SCPV-32 DC1000V Fuse Base	02
SCPV1085-32 DC1500V Fuse	04
SCPV-63T DC1500V Fuse Base	0
AC /DC Circuit Breakers	0
SCM1-63DC MCB	0
SCM3DC DC MCCB	11
SCM3HU AC MCCB	18
PV/DC Surge Protector Device	28
SCSP-20 surge protector device	28

ABOUT US

Company Profile

Wenzhou Solarc New Energy Technology Co., Ltd. is a high-tech enterprise specializing in the new energy field, integrating research and development, production, sales, and services. Equipped with a modern production base and a team of professional technicians, the company boasts strong production capabilities and R&D strength. We are committed to providing global customers with efficient and reliable photovoltaic system solutions to contribute to the development of the new energy industry.

CORPORATE CULTURE

Innovation: We focus on technological innovation, invest in resources, and improve product performance and quality to meet and exceed expectations.

Quality: We always prioritize product quality, strictly controlling the production process to ensure that each product meets high-quality standards.

Service: We offer comprehensive pre-sales, in-sales, and after-sales services to our customers, promptly addressing any issues they encounter during use and establishing long-term, stable cooperative relationships.

Corporate Development Vision

We are committed to a customer-centric and market-oriented approach, emphasizing technological innovation and continuous product upgrades. Our goal is to establish ourselves as a leading enterprise in the field of new energy, delivering high-quality products and services to users worldwide, and contributing to the advancement of the new energy industry.

Corporate Strengths

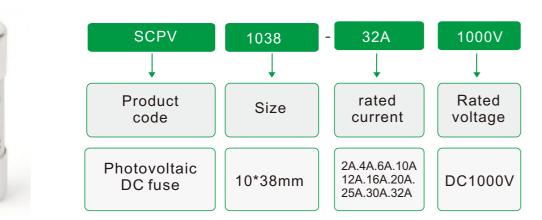
Technological Leadership: We have a dedicated professional technical team focused on core technologies and systems, ensuring that our products are at the forefront of the industry in terms of performance and reliability.

Quality Reliability: We have a strict quality management system. From raw material procurement to finished product delivery, everything undergoes rigorous testing to ensure the high quality of our products.

Comprehensive Service: We offer a comprehensive after-sales service system that provides timely and efficient technical support and after-sales service to our customers, addressing their concerns.use and establishing long-term, stable cooperative relationships.

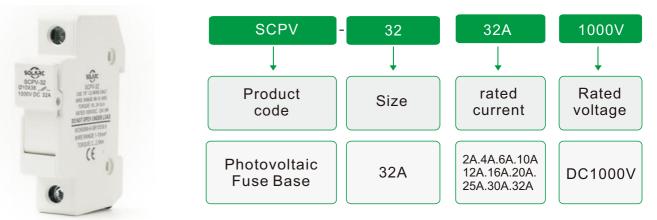
PRODUCT OVERVIEW

The SCPV-32 fuse base features a narrower installation width, effectively saving space in combiner boxes. The design includes ventilation slots on both sides, which effectively control the temperature rise when products are installed side by side. The flame-retardant plastic housing ensures enhanced safety. This product is primarily designed for use with the SCPV1038 photovoltaic DC fuse. It is applied in DC combiner boxes, string inverters in the photovoltaic industry, and converters in the energy storage industry, to protect and isolate photovoltaic modules or arrays, as well as chemical (storage) batteries.


REFERENCE STANDARD

GB13539.1/GB13539.6:IEC60269-1/IEC60269-6;UL248-19/UL4248-19

MODEL DESCRIPTION DC FUSE


ELECTRICAL CHARACTERISTICS	ELECTRICAL CHARACTERISTICS							
Standard	Standard							
Rated working voltage		DC1000V						
Frame maximum current		32A	30A					
Rated current		2A-32A	2A-30A					
Rated insulation voltage	Rated insulation voltage							
Rated breaking capacity		20KA						
Service category		gPV						
Maximum loss (W)		≤6W						
Service ambient temperature	Service ambient temperature							
Storage ambient temperature	Storage ambient temperature							
Dimensions	а	φ10.3±0.1						
	b	38±0.1						

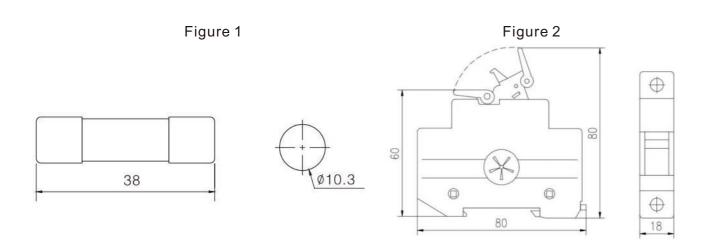
02 Product Selecton Guide ------ Our Products

MODEL DESCRIPTION DC FUSE Base

ELECTRICAL CHARACTERISTICS	
Standard	IEC60269-6,IEC60947
Rated working voltage	DC1000V
Maximum current of shell frame	32A
Rated current	Max32A
Rated insulation voltage	1000V
CONNECTION AND INSTALLATION	
Protection level	IP20
Installation method	Installed on a DIN35 rail
Operating ambient temperature	-40°C~+90°C
Storage ambient temperature	-40°C~+90°C
Altitude	Use it with derating when the altitude is above 2000 meters.
Dimensions	See the attached figure.

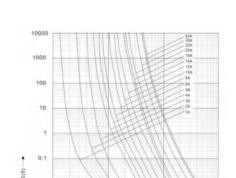
NORMAL WORKING CONDITIONS

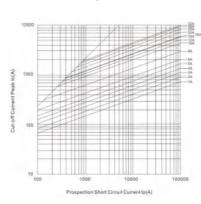
The upper limit of the surrounding air temperature shall not exceed 90°C; the lower limit of the surrounding air temperature shall not lower than -40°C; the altitude of the installation site shall not exceed 2000m (if it exceeds 2000m, the requirements shall noted, and the company can manufacture according to the customer's requirements).

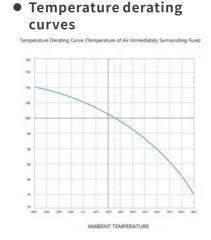

FORUSE

"gPV" indicates a DC fuse with full range of breaking capacity for overcurrent protection of solar photovoltaic systems.

■ CONSTRUCTION FEATURES


A solid silver strip of variable cross section is encapsulated in a porcelain tube of high strength, which is filled with quartz sand of high purity and special chemical treatment as arc quenching medium. The ends of the fuse are firmly connected to the end caps by spot welding.


MAIN TECHNICAL PARAMETERS


CHARACTERISTIC CURVE DIAGRAM

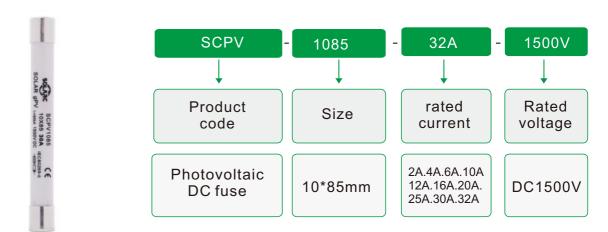
• Time-current curve diagram • Current interruption

curve diagram

04 Product Selecton Guide ------

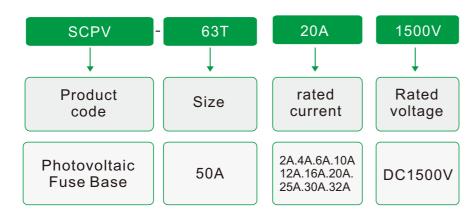
PRODUCT OVERVIEW

The SCPV-63T fuse base features a narrower installation width, effectively saving space in combiner boxes. The design includes ventilation slots on both sides, which effectively control the temperature rise when products are installed side by side. The flame-retardant plastic housing ensures enhanced safety. This product is primarily designed for use with the SCPV1085 photovoltaic DC fuse. It is applied in DC combiner boxes, string inverters in the photovoltaic industry, and converters in the energy storage industry, to protect and isolate photovoltaic modules or arrays, as well as chemical (storage) batteries.


■ REFERENCE STANDARD

GB13539.1/GB13539.6:IEC60269-1/IEC60269-6;UL248-19/UL4248-19

MODEL DESCRIPTION DC FUSE

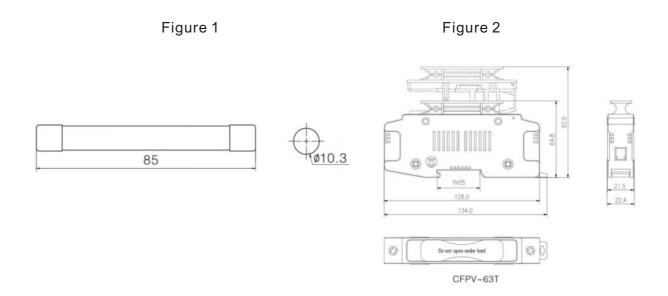

ELECTRICAL CHARACTERISTICS	ELECTRICAL CHARACTERISTICS							
Standard		IEC60269-6	UL248-19					
Rated working voltage		DC1500V						
Frame maximum current		32A	30A					
Rated current		2A-32A	2A-30A					
Rated insulation voltage	Rated insulation voltage							
Rated breaking capacity	Rated breaking capacity							
Service category		gPV						
Maximum loss (W)		≤9.5W						
Service ambient temperature	Service ambient temperature							
Storage ambient temperature	Storage ambient temperature							
Dimensions	а	φ10.3±0.1						
Billetisions	b	85±0.2						

ELECTRICAL CHARACTERISTICS	
Standard	IEC60269-6,IEC60947
Rated working voltage	DC1500V
Maximum current of shell frame	32A
Rated current	Max32A
Rated insulation voltage	1500V
CONNECTION AND INSTALLATION	
Protection level	IP20
Installation method	Installed on a DIN35 rail
Operating ambient temperature	-40°C~+90°C
Storage ambient temperature	-40°C~+90°C
Altitude	Use it with derating when the altitude is above 2000 meters.
Dimensions	See the attached figure.

NORMAL WORKING CONDITIONS

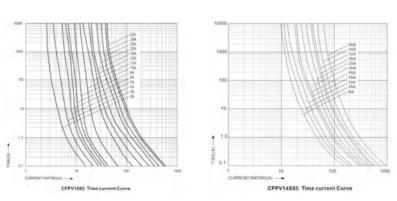
The upper limit of the surrounding air temperature shall not exceed 90°C; the lower limit of the surrounding air temperature shall not lower than -40°C; the altitude of the installation site shall not exceed 2000m (if it exceeds 2000m, the requirements shall noted, and the company can manufacture according to the customer's requirements).

FORUSE

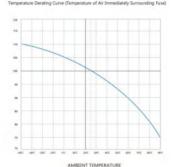

"gPV" indicates a DC fuse with full range of breaking capacity for overcurrent protection of solar photovoltaic systems.

■ CONSTRUCTION FEATURES

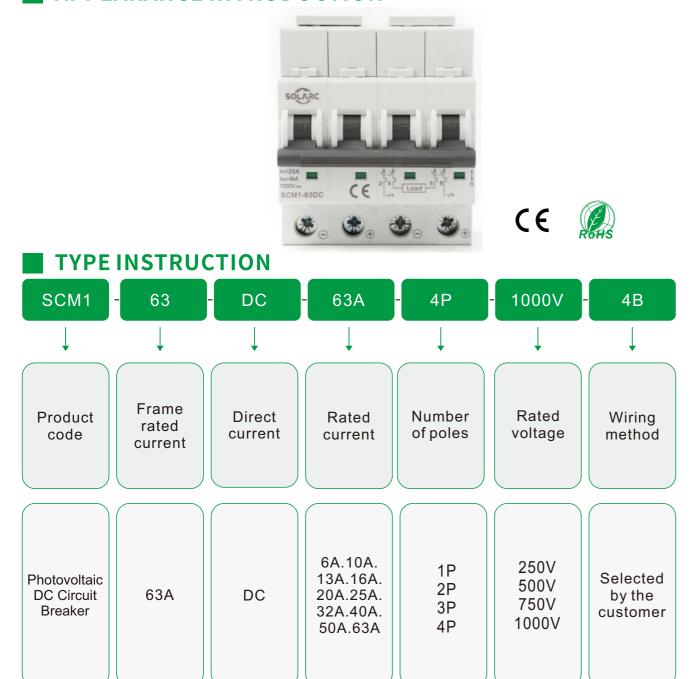
A solid silver strip of variable cross section is encapsulated in a porcelain tube of high strength, which is filled with quartz sand of high purity and special chemical treatment as arc quenching medium. The ends of the fuse are firmly connected to the end caps by spot welding.


06 Product Selecton Guide ------

MAIN TECHNICAL PARAMETERS


CHARACTERISTIC CURVE DIAGRAM

Temperature derating curves


Our Products

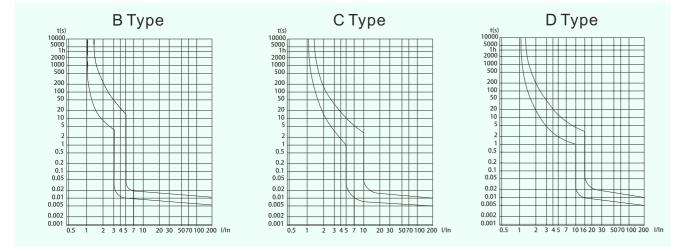
The SCM1-63DC photovoltaic DC miniature circuit breaker is specially designed for photovoltaic systems and is suitable for DC circuits with a rated voltage of DC1000V and a maximum rated current of 63A. Its main function is to provide overload and short-circuit protection for the DC lines and equipment in photovoltaic and energy storage systems. It can quickly cut off the fault current and protect photovoltaic modules, inverters, energy storage and other equipment.

It complies with the standards: GB/T 14048.2, IEC 60947-2, meets the RoHS environmental protection requirements of the European Union, and has obtained the CE certification.

APPEARANCE INTRODUCTION

08 Product Selecton Guide ----- Our Products

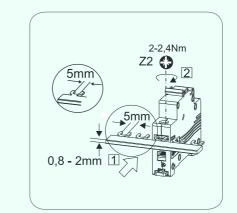
Electrical Characteristics						
Standard		IEC 60947-2	GB/T 14048.2			
Number of poles	1P	2P	3P	4P		
Rated operating voltage	250V	500V	750V	1000V		
Maximum current of the frame		63	BA			
Rated current	6A,10	A,13A,16A,20A,	25A,32A,40A,50	A.63A		
Rated insulation voltage		1000	V DC			
Rated impulse withstand voltage		61	ίV			
Operational breaking capacity		61	κA			
Ultimate breaking capacity	6kA					
Arcing distance		50:	mm			
Tripping type		Thermal-ma	agnetic type			
Service life						
Mechanical life		10,	000			
Electrical life		1,5	500			
Installation and Environment						
Protection level	IP4	10 on the side, IP	20 at the wiring p	oort		
Wiring capacity		2.5-2	5mm²			
Wiring torque		2N·m -	2.5N·m			
Operating ambient temperature		-40°C to	o +80°C			
Storage ambient temperature	-40°C to +85°C					
Moisture and heat resistance	Class 2 (When the humidity is at 55 , the relative humidity is 95%)					
Installation and fixation		Fixed on a 35mm DIN rail				

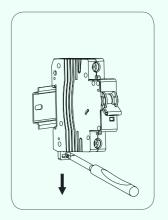

SCM1-63DC CHARACTERISTICS CURVES

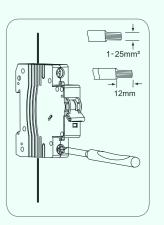
	ThermalTr	Magnet	cicTripping			
Asper IEC60898	No tripping current	Tripping current	Time Limits t	Hold current	Trip current	Time Limits t
B Curve	1.13× IN		≥1h	3× IN		≥0.1s
		1.45× IN	<1h		5× IN	<0.1s
C Curve	1.13× IN		≥1h	5× IN		≥0.1s
		1.45× IN	<1h		10× IN	<0.1s
D Curve	1.13× IN		≥1h	10× IN		≥0.1s
		1.45× IN	<1h		20× IN	<0.1s

Circuit Breaker Curve Chart

Default C Curve. For other curves, please contact for customization.

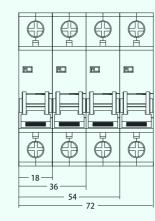

Wiring method

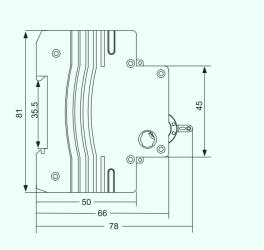

For alternative wiring methods, please contact for customization.

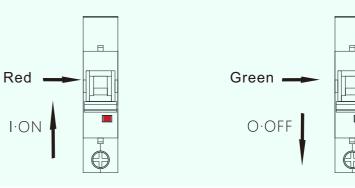

Product	Numb	er of poles	Wiring diagram			
	1P	1A Default wiring method	1 + + + 2	1 1 Load \$\frac{1}{2}\$\$\frac{1}		
	20	2A Default wiring method	1 3 +	1 3 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
sone	2P	2B	1 3 ± ± ± ± + + + + + + + + + + + + + + +	1 3 -/+ 1 3		
	3P	3A Default wiring method	1 3 5 1 4 4 2 4 6	1 3 5		
CONTROL CE TO CONTROL		3B	1 3 5 1 4 4 4 2 4 6	1 3 5 1 3 5 -1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	4P	4A Default wiring method	1 3 5 7 * * * * * * *	1 3 5 7		
		4B	1 3 5 7 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 8	1 5 7 + Load 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
		4C	1 3 5 7 1 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Customized Wiring Method		

Installation, Testing, and Operational Use

10 Product Selecton Guide ------



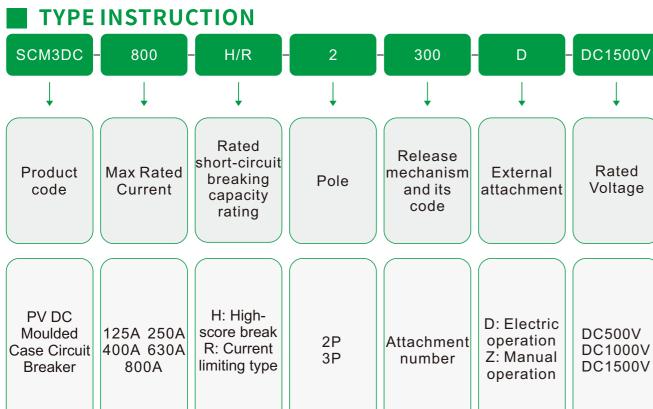



Overalland Installation Dimension(mm)

SCM1-63DC

Before installation and use, check whether the circuit breaker indicator matches the working conditions. The status of the circuit breaker being closed or open is indicated.

APPLICATION


The SCM3DC-800 DC molded case circuit breaker is designed for use in circuits with a rated operating voltage of up to DC 1500V and a working current ranging from 63A to 800A. It is a high-performance protective device specifically engineered for applications in photovoltaic (PV), energy storage, and DC circuit systems. This circuit breaker is widely used in PV power generation systems, energy storage systems, DC combiner boxes, the DC input side of inverters, and the input and output sides of DC power supply systems. It provides reliable protection for equipment in the event of overload or short circuit, ensuring stable system operation under various environmental conditions.

APPEARANCE INTRODUCTION

12 Product Selecton Guide ------ Our Products

SRM3DC SERIES DC HIGH VOLTAGE PLASTIC SHELL CIRCUIT BREAKER

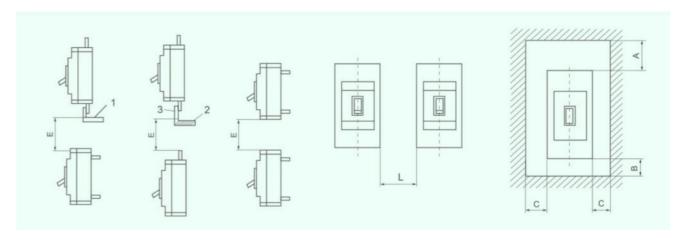
SHELL FRAM	ΙE		SCI	M3DC-32	SCM3DC-400			
Number of poles			2	3		2		3
Rated working voltage Ue(V)		DC500	DC1000	DC1500	DC250/500	DC750/1000	DC1250/1500	DC1250/1500
Rated insulation voltage Ui(V)		DC	1250	DC1500		DC	1500	
Rated impulse withstand voltage U(kV)		8 12 12				12		
Rated current In(A) 63, 80, 100, 125, 140, 160, 180, 200, 225, 250, 280, 315, 320 225, 250, 315, 350, 400								
Rated ultimate short-circuit	Н	50	20	20	65	35	15	15(2-POLE SERIES) 20(3-POLE SERIES)
breaking energy Icu(kA)	R	1	1	1	70	40	20	20(2-POLE SERIES) 25(3-POLE SERIES)
Rated operating short-circuit breaking capacity Ics(kA)	′	ICS=100%LCU						
mode of connecti	on	Top in b	ottom out,	bottom in to	op out (2P, 320)/3P) Bottom ii	n bottom out, top	in top out (3P)
use classes						А		
Whether it has an isolation	function					yes		
ambient temperat	ture				-35°(C~+70°C		
Mechanical life (t	imes)		2000			10	0000	
Electrical life (tim	es)	3000	2000	1500	1000	1000	700	500
meet a criterion					IEC/EN 60947	-2、GBIT 14048.2		
attachment			Separate	excitation, as	sistance, alarm, n	nanual operation, el	ectrical operation	
authentication CCC, CE, TUV								
Dimensions (Length x Width x Height)			30x76x126(2 0x107x126(250x124x16 250x182x16	\ /	

Note: 320 shell frame does not distinguish H: high breaking capacity, R: current-limiting type.

SRM3DC SERIES DC HIGH VOLTAGE PLASTIC SHELL CIRCUIT BREAKER

SHELL FRAM	Е	SCM3DC-630			0 SCM3DC-800			
Number of poles			2	3		2		3
Rated working voltage Ue(V)		DC1000	DC1500	DC1500	DC250/500	DC750/1000	DC1250/1500	DC1250/1500
Rated insulation voltage Ui(V)		DC	1500	DC1500		DC	1500	
Rated impulse withstand voltage U(kV)			12	12		12		
Rated current In(A	A)		500、630			700	0、800	
Rated ultimate short-circuit	Н	35	15	20	65	35	15	15(2-POLE SERIES) 20(3-POLE SERIES)
breaking energy lcu(kA)	R	40	20	25	70	40	20	20(2-POLE SERIES) 25(3-POLE SERIES)
Rated operating short-circuit breaking capacity Ics(kA)	,	ICS=100%LCU						
mode of connection	on	Top in bottom out, bottom in top out (2P, 320/3P) Bottom in bottom out, top in top out (3P)						
use classes		А						
Whether it has an isolation f	unction	yes						
ambient temperat	ure	-35°C~+70°C						
Mechanical life (ti	mes)		5000			50	000	
Electrical life (tim	es)	1000	1000	700	1000	1000	700	500
meet a criterion		IEC/EN 60947-2、GBIT 14048.2						
attachment		Separate excitation, assistance, alarm, manual operation, electrical operation						
authentication					CCC′	CE, TUV		
Dimensions (Length x Width x Height)			0x124x165(0x182x165(250x124x16 250x182x16		

Note:320 shell frame does not distinguish H: high breaking capacity, R: current-limiting type.


SCM3DC SERIES DC HIGH VOLTAGE MOLDED

CASE CIRCUIT BREAKERS

X 100% rated current

14 Product Selecton Guide ------ Our Products

THE SAFE DISTANCE WHEN INSTALLING CIRCUIT BREAKERS

		A				E	
Type number	L	No zero flight arc cover	With zero flight arc cover	В	С	No zero flight arc cover	With zero flight arc cover
SCM3DC-320	40	50	65	25	25	50	130
SCM3DC-400		100	65	25	25	100	130
SCM3DC-630	70	100	65	25	25	100	130
SCM3DC-800		100	65	25	25	100	130

In the figure :1. No insulated link; 2 Insulated wires; 3 Cable terminal blocks

SCM3DC SERIES AC/DC HIGH VOLTAGE MOLDED CASE CIRCUIT BREAKERS

The type of the release device and the code of its accessories

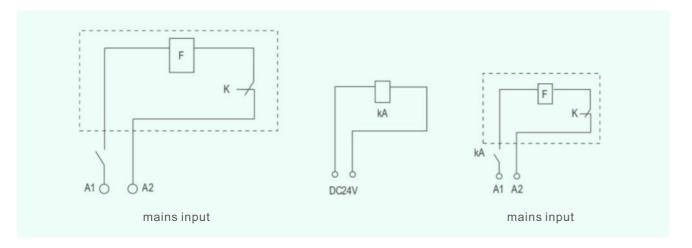
300 indicates: delay protection + instantaneous protection

Attachment code	Attachment Name	SCM3HU-250/320	SCM3HU-400630/800	SCM3DC-250/320	SCM3DC-400/630/800
300	No internal attachments				
310	hunt release	+ 0	+ 0	+-	+-
320	Auxiliary contact (1NO1NC)		- 8	- 8	
340	Shunt release unit + auxiliary contact (1NO1NC)	+ * * *		+	

SCM3DC DC HIGH VOLTAGE MOLDED CASE CIRCUIT BREAKERS

shunt release

Generally installed in phase A of the circuit breaker, the shunt trip unit should ensure reliable tripping of the circuit breaker under all operating conditions when the rated control power supply voltage is between 70% and 110%.


Control voltage: conventional AC50Hz, 110 v, 230 v, 400 v, DC 24 v, 110 v, 220 v.

Note: When the power supply of the control loop is DC24V, it is recommended to use the following figure for the design of the shunt control loop.

KA: It is a DC24V intermediate relay with a contact current capacity of 1A.

K: The miniature switch inside the shunt trip unit, which is connected in series with the coil, is a normally closed contact. When the circuit breaker opens, this contact opens automatically and closes when the circuit breaker closes

Wiring diagram of shunt trip unit

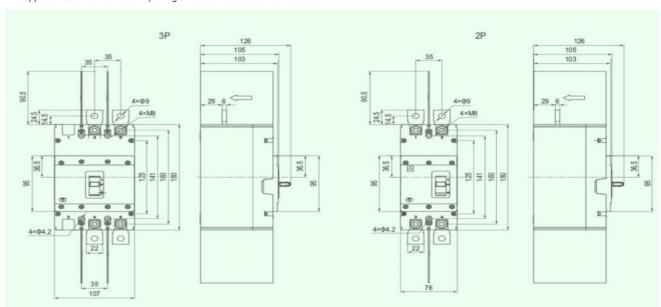
16 Product Selecton Guide ------

auxiliary contact

Auxiliary contact current parameters

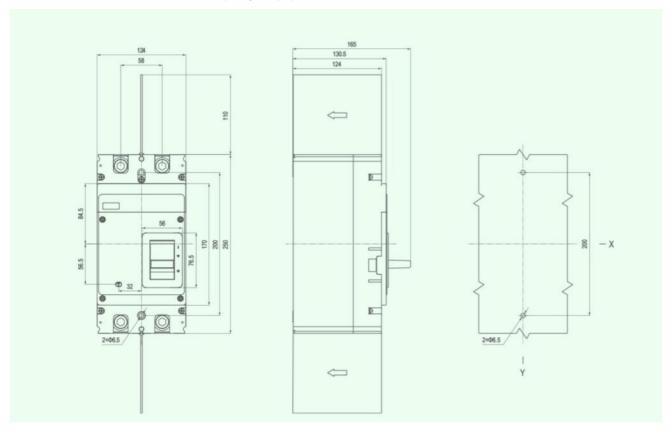
Rated current of the shell frame grade	Agree on the heating current Ith	Agree on the heating current Ith
Inm<250	3A	0.30A
Inm>400	6A	0.40A

Our Products

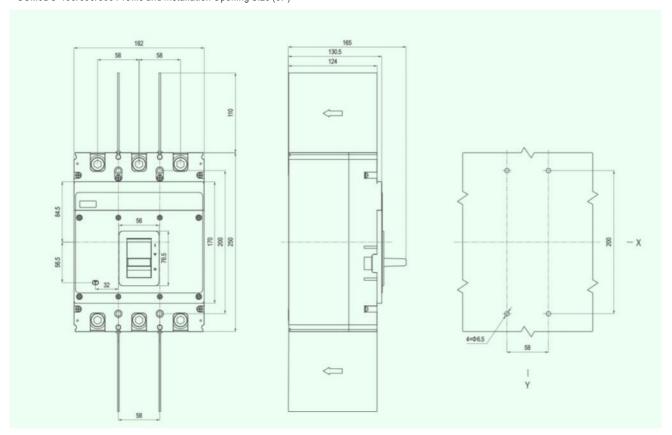

Auxiliary contacts and their combinations

When the circuit breaker is in the	F12 F11 F14 F22 F24 F24
"open" position	F12 — F11
	F12 F14 F22 F24 F21
When the circuit breaker is in the "closed" position	F12 F11

Wiring method of DC circuit breaker



The appearance and installation opening dimensions of SCM3DC-250/320



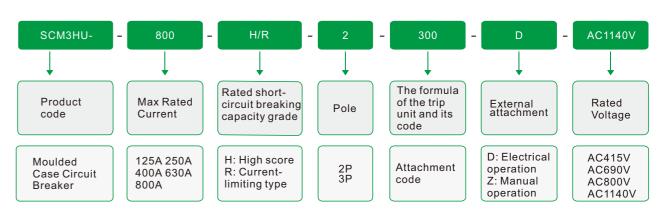
SCM3DC-400/630/800 Profile and Installation Opening Size (2P)

SCM3DC-400/630/800 Profile and Installation Opening Size (3P)

18 Product Selecton Guide ------ Our Products

APPLICATION

The SC3MHU-800 high-voltage AC molded case circuit breaker is designed for use in AC circuits with a frequency of 50/60Hz and a rated operating voltage up to AC1140V. It is suitable for rated operating currents ranging from 10A to 800A. This circuit breaker is used for making, breaking, and carrying rated currents, and provides reliable protection for circuits and electrical equipment in the event of overload, short circuit, and undervoltage.


APPEARANCE INTRODUCTION

 ϵ

TYPE INSTRUCTION

SCM3HU SERIES AC HIGH VOLTAGE MOLDED CASE CIRCUIT BREAKERS

Appearance

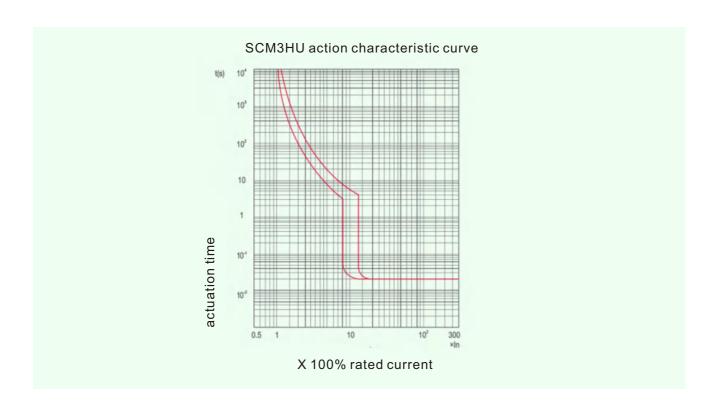
SUPPLESSOR DE SOR DE

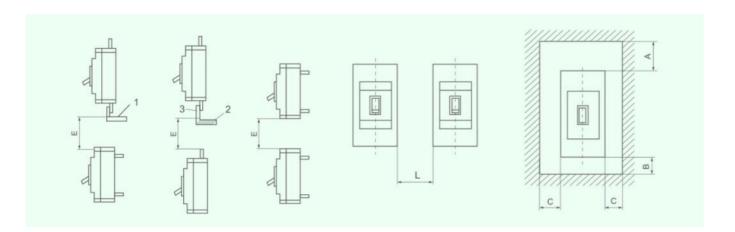
Shell frame SCM3HU-320 SCM3HU-400 3 3 Number of poles Rated working voltage Ue(V) AC415 AC500/690 AC800 AC1000/1140 AC415 AC500/690 AC800 AC1000/1140 Rated insulation voltage Ui(V) AC1150 Rated Impact withstand voltage Uimp(kV) 12 63, 80, 100, 125, 140, 160, 180, 200, Rated current In(A) 250, 280, 315, 320, 350, 400 225, 250, 280, 315, 320 Rated ultimate 85 50 85 50 10 36.5 10 36.5 short-circuit breaking energy lcu(kA) 100 60 50 15 Rated operating short-circuit breaking capacity Ics(kA) Ics=100%cu use classes Α Whether it has an isolation yes function ambient temperature -35°C~+70°C 20000 1000 Mechanical life (times) 3000 3000 3000 2000 1000 1000 1000 700 Electrical life (times) IECJEN 60947-2,GB/T 14048.2 meet a criterion attachment Separate excitation, assistance, alarm, manual operation, electrical operation authentication CCC.CE.TUV Dimensions 180X107X126 (3P) 250X182X165 (3P)

Note :320 shell frame does not distinguish H: high breaking rate, R flow pattern.

20 Product Selecton Guide ------ Our Products

SCM3HU SERIES AC HIGH VOLTAGE MOLDED CASE CIRCUIT BREAKERS


Appearance


Shell frame			SCM3	HU-630			SCM3HU	-800		
Number of poles				3			3			
Rated working voltage Ue(V)		AC415	AC500/690	AC800	AC1000/1140	AC415	AC500/690	AC800	AC1000/1140	
Rated insulation voltage Ui(V)			AC1150							
Rated Impact withstar voltage Uimp(kV)	nd			8			12			
Rated current In(A)		500、630 700、800			800					
Rated ultimate short-circuit breaking energy	Н	85	50	36.5	10	85	50	36.5	10	
Icu(kA)	R	100	60	50	15	100	60	50	15	
Rated operating short-circuit breaking capacity lcs(kA)	short-circuit breaking capacity Ics=1			lcs=10	00%cu					
use classes					A	4				
Whether it has an isol function	ation				ує	es				
ambient temperature					-35°C~	-+70°C	0°C			
Mechanical life (times	5)		50	00		1000				
Electrical life (times)		1000	1000	1000	700	1000	1000	1000	700	
meet a criterion	criterion IECJEN 60947-			7-2,GB/T 14048.2						
attachment		Separate excitation, assistance, alarm, manual operation, electrical operation				operation				
authentication		CCC,CE,TUV								
Dimensions (Length x Width x Height)			250X182	(165 (3P)		250X182X165 (3P)				

Note: 320 shell frame does not distinguish H: high breaking rate, R flow pattern.

SCM3HU SERIES AC HIGH VOLTAGE MOLDED CASE CIRCUIT BREAKERS

THE SAFE DISTANCE WHEN INSTALLING CIRCUIT BREAKERS

		А				E	
Type number	L	No zero flight arc cover	With zero flight arc cover	В	С	No zero flight arc cover	With zero flight arc cover
SCM3HU-320	40	50	65	25	25	50	130
SCM3HU-400		100	65	25	25	100	130
SCM3HU-630	70	100	65	25	25	100	130
SCM3HU-800		100	65	25	25	100	130

In the figure :1. No insulated link; 2 Insulated wires; 3 Cable terminal blocks

SCM3HU SERIES AC HIGH VOLTAGE MOULDED CASE CIRCUIT BREAKERS

The type of the release device and the code of its accessories

300 indicates: delay protection + instantaneous protection

22 Product Selecton Guide ------ Our Products

Code	Attachment Name	SCM3HU-250/320	SCM3HU- 400/630/800	SCM3DC-250/320	SCM3DC- 400/630/800
300	No internal attachments		_		_
308	Alarm contact	+0=	← □	+0=	+ 0 =
310	Shunt trip device	+ •	+ •	+ •	+ •
320	Auxiliary contact (1NO1NC)		+		+
302	Auxiliary contact (2NO2NC)				- 1
330	Undervoltage release device				
340	Shunt trip device + auxiliary contact (1NO1NC)	+ B B +	-		-
312	Shunt trip device + auxiliary contact (2NO2NC)				
350	Shunt trip device + undervoltage release device				
360	Two sets of auxiliary contacts (2NO2NC)	+		← ■ ∃ ■→	
322	Two sets of auxiliary contacts (3NO3NC)				
323	Two sets of auxiliary contacts (4NO4NC)				
370	Undervoltage release device + auxiliary contact (1NO1NC)				
332	Undervoltage release device + auxiliary contact (2NO2NC)				
318	Shunt trip device + alarm contact				
328	Auxiliary contact (1NO1NC) + alarm contact	+	← □	+	← □
338	Undervoltage release device + alarm contact				
240	Shunt trip device auxiliary contact (1NO1NC) + alarm contact	t ——	- 0		
348	Shunt trip device auxiliary contact (2NO2NC) + alarm contact	t —			
260	Two sets of auxiliary contacts (2NO2NC) + alarm contact		-	- BH -	
368	Two sets of auxiliary contacts (4NO4NC) + alarm contact				
305	Two sets of auxiliary contacts (3NO3NC) + alarm contact				
378	Two sets of auxiliary contacts (1NO1NC) + undervoltage release device + alarm contact				
3/6	Two sets of auxiliary contacts (2NO2NC) + undervoltage release device + alarm contact				

Auxiliary contact

Current parameters of the auxiliary contact

Rated current of frame level	Conventional heating current Ith	Rated operating current at AC 400V
Inm<250	3A	0. 30A
Inm>400	6A	0. 40A

Auxiliary contacts and their combinations

When the circuit breaker is in the "open" position	F12 F21 F21
	F12 — F11
	F12 F24 F21
When the circuit breaker is in the "closed" position	F24
	F12 F14

Alarm contact

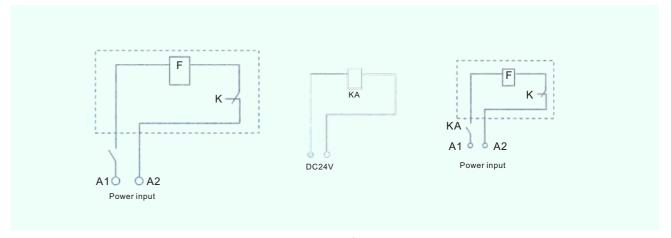
Alarm contact and its combination

Alarm contact Ue=220V, Ith=3A	
When the circuit breaker is in the "open" or "closed" position	B14 B11
When the circuit breaker is in the "free trip" position	B14 B11

24 Product Selecton Guide ------ Our Products

Shunt Trip

It is generally installed on phase A of the circuit breaker. When the rated control power supply voltage is between 70% and 110%, the shunt trip should make the circuit breaker trip reliably under all operating conditions.

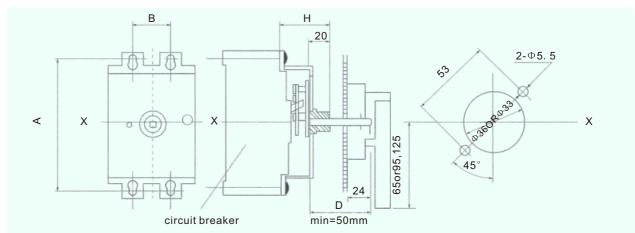

Control Voltage: Conventional: AC 50Hz, 110V, 230V, 400V; DC 24V, 110V, 220V.

Note: When the control circuit power supply is DC 24V, it is recommended to design the shunt trip control circuit according to the diagram below.

KA: It is a DC 24V intermediate relay, and the contact current capacity is 1A.

K: It is a micro switch in series with the coil inside the shunt trip, which is a normally closed contact. When the circuit breaker trips, this contact will open automatically and close when the circuit breaker closes.

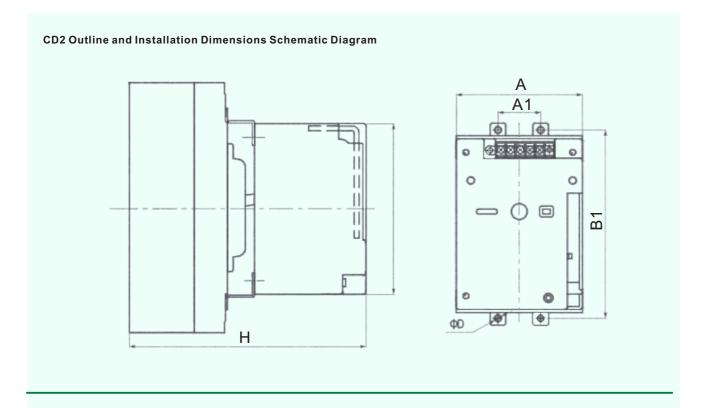
Wiring Diagram of Shunt Trip

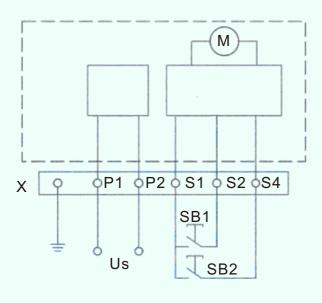


Installation method and overall dimensions of external accessories

Model and specification of the rotating operating handle mechanism

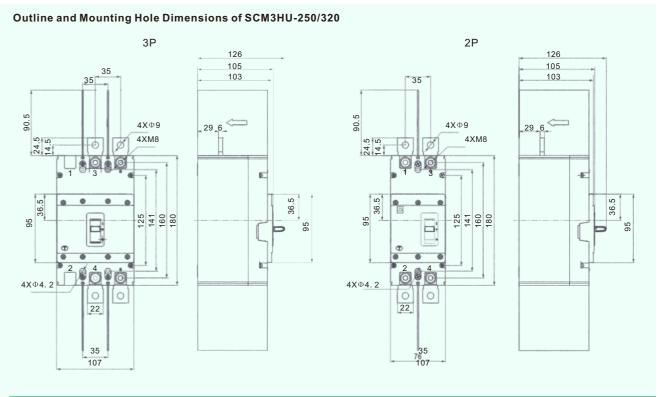
type number		in	stallation dimen	The position of the operating handle	
type number	А	В	Н	D	relative to the center of the circuit breaker (mm)
CZ2-320/SCM3	157	35	55	50-150	0
CZ2-400/SCM3	224	48	78	50-150	±5

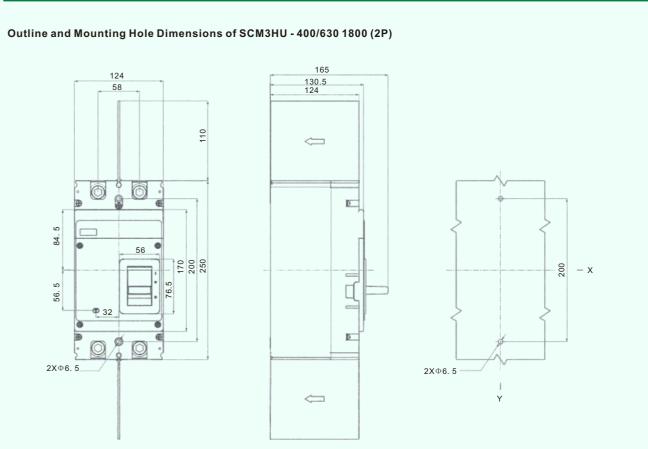

Schematic diagram of the mounting hole for the CS1-A type handle


SCM3HU SERIES AC HIGH VOLTAGE MOULDED CASE CIRCUIT BREAKER

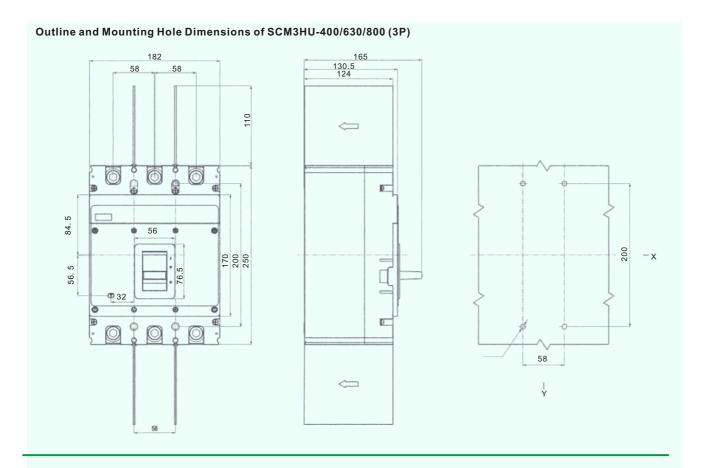
Model and specification of the electric operating mechanism

type number	Н	В	B1	А	A1	D
SRM3-320	188.5	116	126	90	35	4.2
SCM3HU-400/630/800	244	176	194	130	48	6.5

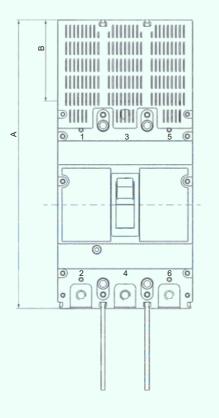

Wiring Diagram of the Electric Operating Mechanism



Explanation of Symbols:
SB1 and SB2 are operating buttons
(provided by the user).
X is the terminal block.
P1 and P2 are external power supplies.


26 Product Selecton Guide ------ Our Products

Outline and Installation Dimensions



SCM3HU SERIES AC HIGH VOLTAGE MOULDED CASE CIRCUIT BREAKER

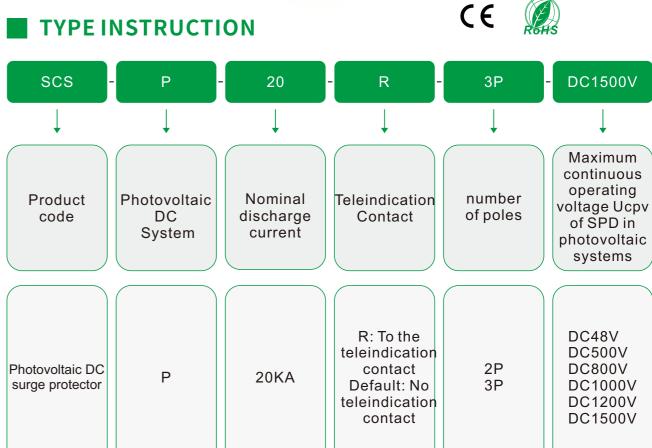
Installation Diagram of SCM3 with Arcing Shield

circuit breaker	The length of the arcing shield is A	The total length is B
SCM3HU-320	64	245
SCM3HU-400/630/800	64	314

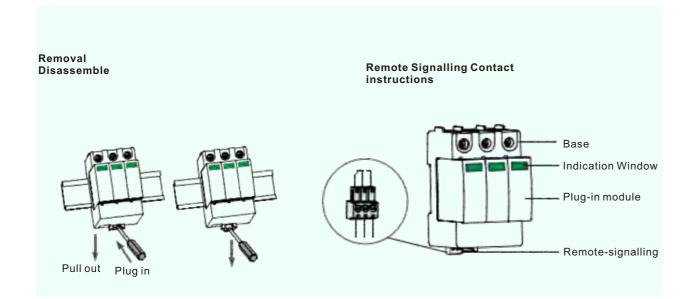
APPLICATION

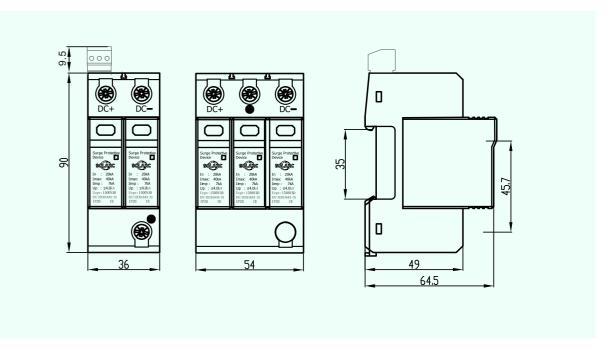
The SCSP - 20/3P DC1500V photovoltaic DC surge protector device is specifically designed for the DC side of photovoltaic systems. It is suitable for DC circuits with a maximum rated voltage of DC1500V, a nominal discharge current of 20kA, and a maximum discharge current of 40kA.

28 Product Selecton Guide ------ Our Products

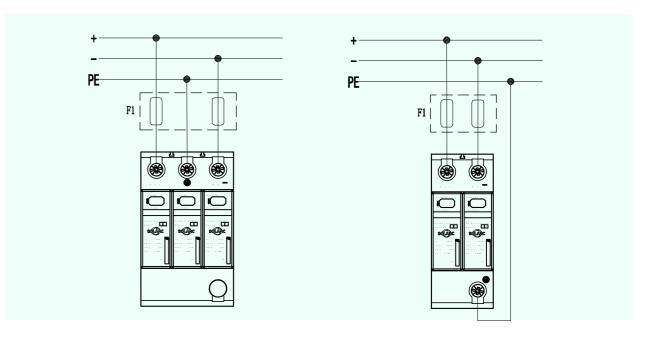

It is mainly used to protect electrical equipment in photovoltaic systems from damage caused by lightning electromagnetic pulses, switching transients, and resonant over voltages. It is widely applied in over - voltage protection of DC power supply systems such as photovoltaic power generation systems and energy storage systems.

APPEARANCE INTRODUCTION





Model Technical Parameters	SCSP20- 40/24V	SCSP20- 40/220V	SCSP20- 40/500V	SCSP20- 40/690V	SCSP20- 40/1000V	SCSP20- 40/1500V			
Specifications	2P36mm	2P 36mm	3P54mm	3P54mm	3P54mm	3P54mm			
Nominal discharge current In(kA 8/20µs)	20	20	20	20	20	20			
Max.continious working voltage ImaxlkA 8/20µs	40	40	40	40	40	40			
Protection level	DC220V	DC220V	18kV	1.8kV	1.8kV	5.0kV			
Response time (ns)	24	25	25	25	25	25			
Rated working voltage (VDC)	24	220	500	690	1000	1500			
continious work voltage (VDC)	48	275	750	780	1100	1800			
0.75U 1mA(µA)Leakage current	≤2	≤2	≤20	≤20	≤20	≤20			
Working temperature($^{\circ}\!$		-40~+85							



Normal		Delerioraled	
Green		Red	
Umax/Imax		250V/1A	
Umax/Imax		30V/1A	
Connection		0.14mm² ~1.5mm²	
Temminal size for cable		7mm	
Productwiring torque		0.20N·m~0.30N·m	

30 Product Selecton Guide ------ Our Products

Level	Minimum cross-sectional area of the upper lead wire (phase wire)	
I	10	16
II	6	10
III	2.5	4

Level	Minimum cross-sectional area of the upper lead wire (phase wire)	
I	10	16
II	6	10
III	2.5	4